

Latin American and Caribbean Internet Addresses Registry Registro de Direcciones de Internet para América Latina y Caribe Registro de Endereços da Internet para América Latina e Caribe

Conceptos generales de DNSSEC

4 de agosto de 2011 Carlos Martínez-Cagnazzo carlos @ lacnic.net

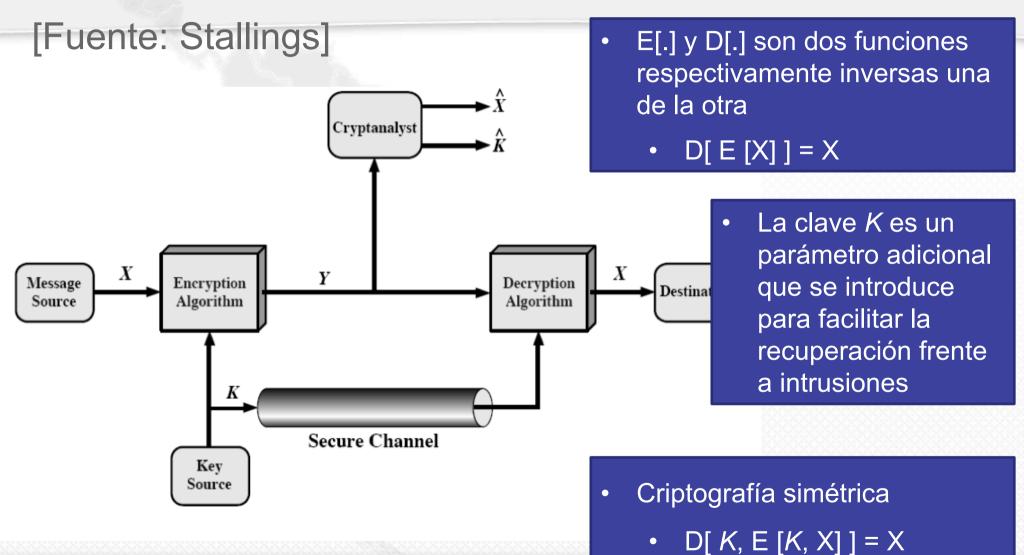
- Conceptos de Criptografía
- DNSSEC
- Donde DNSSEC
- Como DNSSEC
- Nuevos registros
- Cadena de confianza

Tutorial DNS Capítulo III

CRIPTOGRAFÍA

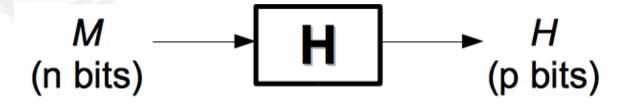
Criptografía

- Conceptos importantes de criptografía para DNSSEC
 - Cifrado de clave pública
 - Algoritmos de hashing
 - Firma digital
 - Cadena de confianza

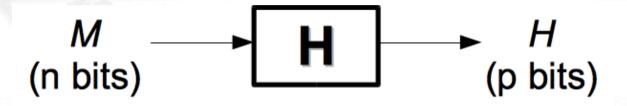


Criptografía (ii)

- En general, dos partes necesitan comunicarse de forma privada buscan asegurar algunas propiedades de la comuniación y de los mensajes:
 - Estar seguras de que nadie más ha podido ver o leer sus mensajes (propiedad de privacidad)
 - Estar seguras de que nadie ha podido alterar sus mensajes (propiedad de integridad)
 - Estar seguras de que quien envía los mensajes es quien dice ser (propiedad de autenticidad)



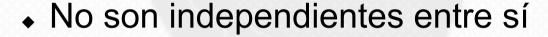
Criptografía simétrica


Hashes criptográficos

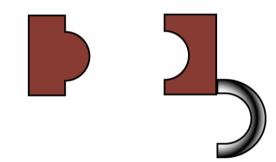
- H es una transformación que cumple
 - p << n
 - Dado el algoritmo, n es fijo
- Esto implica que existen colisiones
- Colisión: Encontrar M1 y M2 tales que H(M1) == H(M2)
- Si H() es buena tiene que ser muy difícil encontrarlos
- Intuitivamente
 - Una función de hash es tanto mejor en cuanto el resultado aparece mas "randómico"

Hashes criptográficos (ii)

- Algunos algoritmos conocidos:
 - MD5
 - 128 bits
 - SHA1 / SHA256
 - 160 / 256 bits

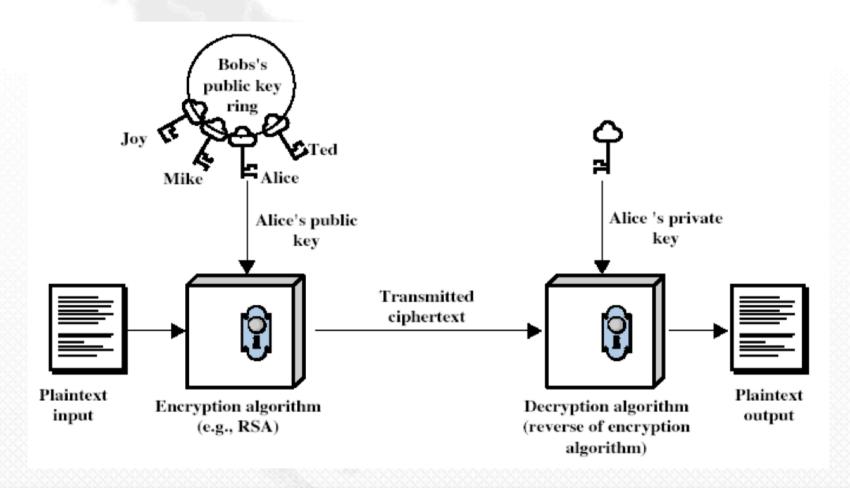

Criptografía de clave pública

- La distribución de claves siempre fue el punto débil de la criptografía tradicional
- Interés en buscar alternativas
- (*Diffie-Hellman ca. 1976*) "Criptografía de Clave Pública"
- La CCP es un criptosistema con las siguientes propiedades
 - D[E(P)] = P
 - D no se puede deducir fácilmente de E
 - E no puede romperse con un ataque de texto plano elegido



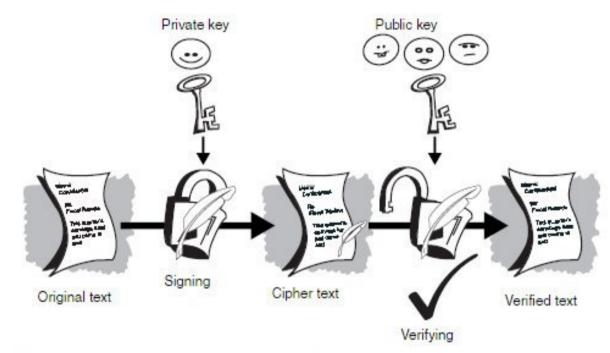
Criptografía de clave pública (ii)

- Cada entidad genera un par de claves, una será la pública y otra la privada
 Private key Public key
 - Kpub, Kpriv



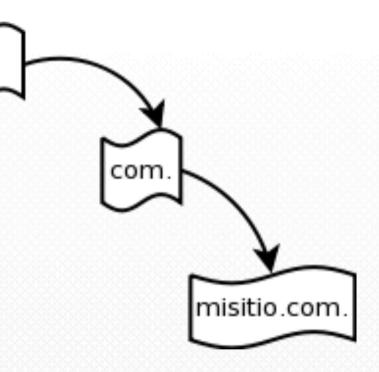
- Para transimitir un mensaje "X" de A -> B se calcula:
 - Y = E [Kpub_B, X]
- Al recibir, B calcula:
 - X' = D[Kpriv_B, Y]

Criptografía de clave pública (iii)


(fuente: Stallings) ***

Firma digital

- Objetivo de la firma digital:
 - Establecer
 pruebas de
 integridad de
 documentos
 digitales
- Implementable utilizando criptografía de clave pública


Firma digital (ii)

- Dado un documento M a ser firmado por A(lice) para ser recibido por B(ob)
 - A calcula:
 - Un hash de M, H = Hash[M]
 - Una firma del mensaje, F = E[Kpriv_A, H]
 - A transmite {M, F} hacia B
- Al recibir, B calcula:
 - El hash de M, H' = Hash[M]
 - Regenera el hash a partir de la firma H = D[Kpub_A, F]
 - Es H == H' ??

Firma digital (iii)

- Cadenas de confianza
 - Cada nivel de una jerarquía firma material de la siguiente
 - La raíz de la jerarquía debe ser considerada especialmente
 - La validación puede ser
 - Top down
 - Up down

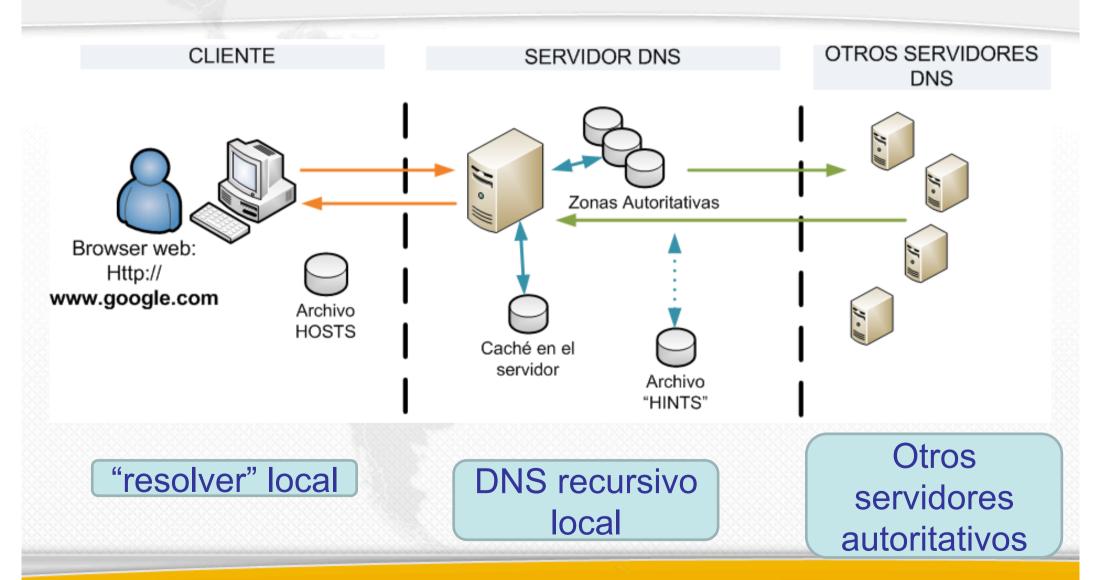
DNSSEC: MOTIVACIÓN

Especificacion del protocolo

- Recordamos: formato de paquetes DNS
 - Header
 - Encabezado del protocolo
 - Flags (QR, RA, RD,...)
 - Question Section
 - La pregunta que hacemos al DNS
 - Tuplas (Name, Type, Class)
 - Answer Section
 - RRs que responden la pregunta (si es que hay), también en (N, T, C)
 - Authority Section
 - RRs que apuntan a una autoridad (opcional)
 - Additional Section
 - RRs que a juicio del DNS pueden ser útiles para quien está preguntando, y que pueden no ser autoritativos

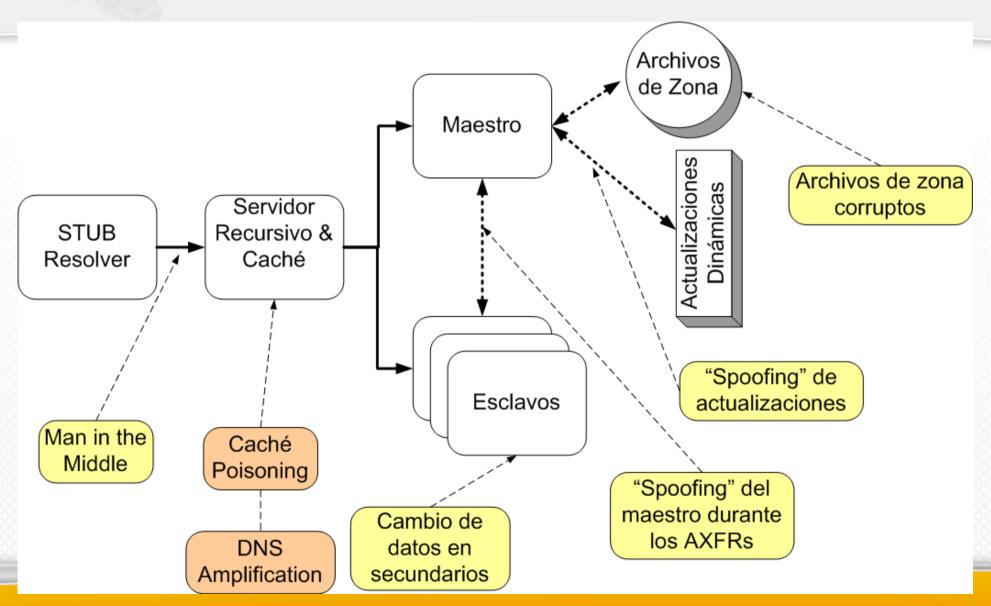
Header

Question


Answer

Authority

Additional



Consultas DNS

Vectores de ataque en DNS

Vulnerabilidades del protocolo DNS

- La información transmitida en DNS puede ser "spoofed"
 - Entre maestro y esclavo (AXFR)
 - Entre maestro y sus clientes "resolver"
- Actualmente el protocolo DNS no permite validar la información contenida en una respuesta
 - Vulnerable a las diferentes técnicas de poisoning
 - Datos envenenados siguen causando problemas por un tiempo (potencialmente grande, TTL)
- Tampoco los secundarios tienen manera de autenticar al primario con el que están hablando

Introduciendo DNSSEC

- Análisis de vulnerabilidades en DNS
 - RFC 3833: "Threat Analysis of the Domain Name System (DNS)"
- DNSSEC:
 - "DNS Security Extensions"
 - RFC 4033, 4034, 4035
 - ~ Marzo 2005
 - Aunque DNSSEC viene siendo tratado desde hace mucho mas tiempo en el IETF

¿De que nos protege DNSSEC?

- DNSSEC nos protegerá de corrupción y del spoofing de datos
 - Proporciona un mecanismo para poder validar la autenticidad y la integridad de los datos contenidos en una zona DNS
 - DNSKEY/RRSIG/NSEC
 - Proporciona un mecanismo para delegar la confianza en ciertas claves públicas (cadena de confianza)
 - DS
 - Proporciona un mecanismo para autenticar las transferencias de zona entre primarios y secundarios

• TSIG

Introducción a DNSSEC

- DNSSEC *no* es un nuevo protocolo
- Es un conjunto de extensiones al protocolo DNS tal como lo conocemos
 - Cambios en el "wire protocol" (EDNS0)
 - Extensión del tamaño máximo de una respuesta UDP de 512 a 4096 bytes
 - Agregado de nuevos resource records
 - RRSIG, DNSKEY, DS, NSEC
 - Agregado de nuevos flags
 - Checking Disabled (CD)
 - Authenticated Data (AD)

Introducción a DNSSEC (2)

- Nuevos RR
 - ◆ RRSIG: Resource Record Signature
 - DNSKEY: DNS Public Key
 - DS: Delegation Signer
 - ◆ NSEC: Next Secure
- Nuevos Flags:
 - AD: indica que la respuesta esta autenticada
 - CD: indica que no se realiza chequeo (deshabilitado)

Introducción a DNSSEC (3)

- (Repaso) Un resource record en DNS es una tupla de cinco valores
 - (nombre, clase, tipo, TTL, valor)
- El registro:
 - www.empresa.com. 86400 IN A 200.40.100.141
 - Esta representado por la tupla:
 - Nombre (www.empresa.com)
 - Clase (IN)
 - Tipo (A)
 - TTL (86400 segundos)
 - Valor (200.40.100.141)

Introducción a DNSSEC (4)

- Resource Record Sets (RRSets)
 - DNSSEC opera firmando RRSets (no RR individuales)
 - Un RRSet es un conjunto de resource records que comparten igual:
 - Clase
 - Tipo
 - Nombre
- Ejemplo de RRSet (TTL omitido):
 - www IN A 200.40.241.100
 - www IN A 200.40.241.101

Introducción a DNSSEC (5) Firma de zona

- Se genera un par de claves (publica y su correspondiente privada) para cada zona
 - El par de claves es propio de cada zona y no del servidor autoritativo
 - La parte privada se debe mantener bajo custodia
 - La privada firma los RRSets de la zona
 - La publica se debe publicar en DNS mediante un registro DNSKEY
 - La privada permite verificar las firmas de los RRSets
 - Un RRSet puede tener multiples firmas generadas con diferentes claves

Introducción a DNSSEC (6)

- La firma digital de un RRSet se devuelve en forma de un registro RRSIG que es parte de la respuesta
- Ejemplo:

:: AUTHORITY SECTION:

```
nic.se.
                             29/4
                                      ΙN
                                                NS
                                                         ns3.nic.se.
                             2974
                                      IN
                                                         ns2.nic.se.
nic.se.
nic.se.
                                                         NS 5 2 3600
                                                RRSIG
nic.se.
20101021132001 20101011132001 23369 nic.se. GSzAUC3SC3D0G/
iesCOPnVux8WkQx1dGbw491RatXz53b7SY0pQuyT1W
eb063Z62rtX7etynNcJwpKlYTG9FeMbDceD9af3KzTJHxq6B+Tpmmxyk
FoKAVaV0cHTcGUXS0bFquGr5/03G79C/YHJmXw0bHun5ER5yr0t0LegU IAU=
```


Cadena de confianza

- ¿Como puede un cliente verificar un RRSet de una cierta zona?
 - Hace una consulta por el DNSKEY correspondiente
 - Realiza los calculos correspondientes y los compara con el RRSIG
 - Si coinciden, la firma verifica, de lo contrario, no
- Pero ¿como se puede confiar en la DNSKEY si sale de la misma zona que queremos verificar?
 - Necesitamos verificar la cadena de confianza

Cadena de confianza (ii)

- Registro DS "Delegation Signature"
 - Los registros DS "firman" claves de zonas hijas
 - De esta forma uno puede verificar el DNSKEY de una zona buscando un registro DS en la zona padre
- El registro DS contiene un hash de la una clave pública
 - Es decir, del contenido de un registro DNSKEY
- Los registors DS en la zona padre están firmados con la(s) claves de esa zona
- Para completar la cadena de confianza tiene que estar firmada la raíz del DNS

Cadena de confianza (iii)

- Pero ¿que pasa con la zona raíz?
 - La zona raíz no tiene "padre" a quien ir a pedirle un registro DS
 - La raíz del DNS esta firmada desde julio de 2010
 - [<u>http://www.root-dnssec.org</u>]
 - → El registro DS para "." se puede obtener fuera de banda
 - [http://data.iana.org/root-anchors/root-anchors.xml]
 - . IN DS 49AAC11D7B6F6446702E54A1607371607A1A41855200F D2CE1CDDE32F24E8FB5

Introducción a DNSSEC (9) Firma de la raíz

- ¿Cómo se verifica la autenticidad del root trust-anchor?
- El TA de la zona raíz se publica fuera de banda, por ello la validación debe ser diferente
 - Se puede bajar por HTTP/HTTPS
 - Se puede verificar por otros mecanismos (certificados, firmas PGP)
 - Similar a lo que pasa con la zona raíz misma, se debe cargar manualmente

Introducción a DNSSEC (10) Negación de existencia

- Respuestas con "NXDOMAIN"
 - Niegan la existencia de un nombre
 - Son respuestas "cacheables" a pesar de ser negativas
- ¿Como firmar la no-existencia?
 - Necesito tener un RRSet para firmar
 - Recordar que en DNSSEC lo que se firma siempre son RRSets
 - Técnicas propuestas:
 - NSEC
 - NSEC3

ZSK vs KSK***

- ZSK
 - Zone Signing Key
- KSK
 - Key Signing Key

Consideraciones finales DNSSEC vs PKI

- DNSSEC no implementa una PKI sobre DNS
 - ◆ Si bien es cierto que se parece ☺
- ¿Por qué no?
 - Los procedimientos de gestión de claves están basados en políticas locales
 - No hay "certificate authority"
 - Si todo un dominio y subdominios están bajo una administración única, entonces si se puede aplicar mas estrictamente un conjunto de políticas
 - No hay CRL ("Certificate Revocation List")

Desplegando DNSSEC

- Veremos cuales serían los pasos para desplegar DNSSEC en una zona
- Los comandos que mostraremos son específicos de BIND 9.6/9.7

Procedimiento básico de firma de zona

- Generación de un par de claves
 - Incluir el DNSKEY creado en la zona
 - Si lo hacemos con BIND esto dispara:
 - El ordenamiento de la zona
 - Inserción de los registros RRSIG
 - Generación de registros DS
 - Recordar que van en el padre

Latin American and Caribbean Internet Addresses Registry Registro de Direcciones de Internet para América Latina y Caribe Registro de Endereços da Internet para América Latina e Caribe

¿Preguntas?